

Fig. 2. Some possible hydrogen bonds and the coordination feature of the cations.

Table 3. $\mathrm{Na}^{+}-\mathrm{O}$ and $\mathrm{K}^{+}-\mathrm{O}$ distances (\AA) less than $3 \cdot 1 \AA$

$\mathrm{Na}-\mathrm{Aql}$	2.34 (4)	$\mathrm{K}-\mathrm{O}_{\mathrm{c}}$	2.91 (2)
Aq ${ }^{1,1 i}$	2.34 (4)	$\mathrm{O}_{1}{ }^{1,11}$	2.81 (1)
Aq2	$2 \cdot 36$ (4)	$\mathrm{O}_{i}^{\text {vi,vil }}$	2.89 (1)
Aq2 $2^{1,11}$	$2 \cdot 36$ (4)	Aq $1^{\text {III, }}$	2.91 (3)
		Aq $2^{\text {iv }}$	3.03 (3)

Symmetry code: (i) x, z, y; (ii) z, x, y; (iii) $-z,-y,-x$; (iv) $-x,-y$, $-z$; (v) $-x,-z,-y$; (vi) $-y,-1-z,-x$; (vii) $-1-z,-y,-x$.

References

Gmelin's Handbuch der Anorganischen Chemie (1933). Vol. 54, pp. 396-397. Berlin: Verlag Chemie.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-98. Birmingham: Kynoch Press.
Lee, U., Kobayashi, A. \& SaSakı, Y. (1983). Acta Cryst. C39, 817-819.
Sakurai, A. (1967). The Universal Crystallographic Computation Program System, Crystallographic Society of Japan.
Sergienko, V. S., Molchanov, V. N., Porai-Koshits, M. A. \& Torchenkova, E. A. (1979). Koord. Khim. 5, 936-942.
Trömel, M. \& Lupprich, L. (1975). Z. Anorg. Allg. Chem. 414, 160-168.

Acta Cryst. (1984). C40, 7-9

Uranyl Hydroxide Sulphamate Trihydrate, ${ }^{*} \mathbf{U O}_{\mathbf{2}}(\mathbf{O H})\left(\mathbf{N H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{3}}\right) \cdot \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O} \boldsymbol{\dagger}$

By J. Toivonen and R. Laitinen
Department of Chemistry, Helsinki University of Technology, SF-02150 Espoo 15, Finland

(Received 6 June 1983; accepted 19 September 1983)

Abstract

M_{r}=437 \cdot 16\), monoclinic, $\quad P 2_{1} / c, \quad a=$ 6.1249 (7), $b=17.3612$ (17), $c=9.0544$ (7) $\AA, \quad \beta=$ $117 \cdot 195(7)^{\circ}, \quad V=856.37(14) \AA^{3}, \quad Z=4, \quad D_{x}=$ $3.390(1) \mathrm{g} \mathrm{cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \mu($ (Мо $K \alpha)$ $=181.8 \mathrm{~cm}^{-1}, \quad F(000)=784, T=294 \mathrm{~K}, R=0.029$ for 1957 observed unique reflections $[I \geq 3 \sigma(I)]$. The seven-coordinated uranium lies at the centre of a distorted pentagonal bipyramid. Two bridging hydroxide groups connect the two polyhedra into a dimer. The remaining three equatorial O atoms in the bipyramid are from two water molecules and from one sulphamate group. The dimers are connected to each other by a complex hydrogen-bonding network.

Introduction. Whereas the structural features of uranyl sulphates have been widely investigated (Serezhkin, 1982) there are rather few studies on the related uranyl sulphamates (Capestan, 1960; Sampath \&

^[* Di- μ-hydroxo-bis|diaquadioxo(sulphamato)uranium(VI)| dihydrate. \dagger Uranyl(VI) Compounds. IV. For part III, see Toivonen \& Niinistö (1983).]

Aravamudan, 1971). All in all, it seems that the structural information on sulphamates is rather sparse (Benson \& Spillane, 1980) with complete crystal structures known only for $\mathrm{KNH}_{2} \mathrm{SO}_{3}$ (Brown \& Cox, 1940; Cox, Sabine, Padmanabhan, Ban, Chung \& Surjadi, 1967) and for $\mathrm{NH}_{4} \mathrm{NH}_{2} \mathrm{SO}_{3}$ (Wadhawan \& Padmanabhan, 1972; Cain \& Kanda, 1972). In this work the crystal structure of uranyl hydroxide sulphamate is reported.

Experimental. Title compound prepared as outlined by Capestan (1960) by mixing 1.0 g of uranium trioxide and 0.5 g of sulphamic acid in $10 \mathrm{~cm}^{3}$ of hot water. Solution filtered and concentrated at 353 K . Upon cooling to room temperature well formed yellow prismatic crystals appeared. Contrary to the neutral uranyl sulphamate obtained by Capestan (1960) the product turned out to be uranyl hydroxide sulphamate.

Details of data collection are shown in Table 1. Empirical absorption correction made from ψ-scan data after which the net intensities were corrected for Lorentz and polarization effects. Structure solved by (c) 1984 International Union of Crystallography
heavy-atom method. After full-matrix least-squares refinement (on F) of the non-hydrogen atoms with anisotropic temperature factors to $R=0.030$ the subsequent difference Fourier map provided the positions of all H atoms, which were included in the final structure-factor calculations (fixed isotropic temperature factor $U=0.05 \AA^{2}$) but not refined. Scattering factors of all neutral non-hydrogen atoms from Cromer \& Mann (1968), those for H from Stewart, Davidson \& Simpson (1965); anomalous-dispersion correction included for uranium (Cromer \& Liberman, 1970). Calculations performed with SHELX76 (Sheldrick, 1976) and XRAY76 (Stewart, 1976) program systems.*

Discussion. The fractional coordinates of all nonhydrogen atoms are shown in Table 2. Selected bond distances and angles are shown in Table 3.

The structure of $\mathrm{UO}_{2}(\mathrm{OH})\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is built up of discrete dimeric units as shown in Fig. 1. The coordination polyhedron around uranium is a pentagonal bipyramid. Two such bipyramids are joined

[^1]
Table 1. Details of the structure determination

Diffractometer	Syntex $P 2_{1}$ (Fortran version)
Crystal size (mm)	$0.10 \times 0.15 \times 0.30$
Cell-constant determination	25 reflections ($30<2 \theta<40^{\circ}$)
Reflections measured	$+h,+k, \pm l$
2θ range (${ }^{\circ}$)	5-60
Scan type	$\theta / 2 \theta$
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	1.5
Scan range (${ }^{\circ}$)	[2日(Mo K a_{1}) - 1.0]-[20(Mo K a_{2}) +1.0$]$
Background measurement	Stationary; at the beginning and end of each scan; each for half of the total scan time
Standard reflection	$\overline{1} \overline{1}$; no significant variation
Absorption correction	Empirical, from ψ-scan data (the range of min. transmission factor $0.51-0.59$ as a function of 2θ taking max. transmission factor as unity)
No. of reflections collected	2823
No. of unique reflections	2533
No. of observed reflections	$1957[I \geq 3 \sigma(I)]$
$R_{\text {int }}$ (from merging equivalent refl.)	0.022
Function minimized	$\sum w\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2}$
Weighting scheme	$w=1 \cdot 1959\left[\sigma^{2}\left(F_{o}\right)+0.000749 F_{o}{ }^{2}\right]^{-1}$
R	0.029
$w R$	0.030
$(\Delta / \sigma)_{\text {max }}$	0.004
Final $\Delta \rho$ excursions (e \AA^{-3})	$-1.8-2.0$ (the maximum values are near uranium)
Extinction correction, ε	$2.3(1) \times 10^{-7}$
$\begin{aligned} & F_{c}(\text { corr })= \\ & F_{c}\left(1-\varepsilon F_{c}^{2} / \sin \theta\right) \end{aligned}$	

together by sharing two hydroxide O atoms. Of the three remaining equatorial O atoms in the bipyramid one is from the sulphamate group which acts as a monodentate ligand and two from two water molecules. The third water molecule does not take part in the coordination around uranium.

Table 2. The fractional coordinates of the non-hydrogen atoms

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$. The numerical values have been multiplied by 10^{2}.

	x	y	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$
U	$0.56477(4)$	$0.41646(1)$	$0.37783(3)$	$1.16(1)$
S	$0.0039(3)$	$0.3736(1)$	$-0.0151(2)$	$1.68(7)$
$\mathrm{O}(1)$	$0.5502(11)$	$0.3465(3)$	$0.5165(6)$	$2.4(2)$
$\mathrm{O}(2)$	$0.5887(10)$	$0.4835(3)$	$0.2383(6)$	$2.4(2)$
$\mathrm{O}(3)$	$0.2625(9)$	$0.4937(3)$	$0.4014(6)$	$1.9(2)$
$\mathrm{O}(4)$	$0.1730(10)$	$0.3727(3)$	$0.1644(6)$	$2.4(2)$
$\mathrm{O}(5)$	$-0.0133(11)$	$0.2979(3)$	$-0.0869(7)$	$3.0(3)$
$\mathrm{O}(6)$	$0.0680(11)$	$0.4346(4)$	$-0.0988(7)$	$3.0(3)$
$\mathrm{O}(7)$	$0.9942(10)$	$0.3995(3)$	$0.4909(7)$	$2.6(3)$
$\mathrm{O}(8)$	$0.6346(10)$	$0.3117(3)$	$0.2175(7)$	$2.6(3)$
$\mathrm{O}(9)$	$0.2814(11)$	$0.1927(3)$	$0.2349(7)$	$3.1(3)$
N	$-0.2641(12)$	$0.3899(4)$	$-0.0219(8)$	$2.3(3)$

Table 3. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$, and selected intermolecular contacts (\AA)

$\mathrm{U}-\mathrm{O}(1)$	1.779 (6)	$\mathrm{O}(1)-\mathrm{U}-\mathrm{O}(2)$	177.4 (3)
$\mathrm{U}-\mathrm{O}(2)$	1.773 (6)	$\mathrm{O}(3)-\mathrm{U}-\mathrm{O}\left(3^{\text {i }}\right.$)	67.5 (2)
$\mathrm{U}-\mathrm{O}(3)$	2.374 (6)	$\mathrm{O}(3)-\mathrm{U}-\mathrm{O}(4)$	73.7 (2)
$\mathrm{U}-\mathrm{O}\left(3^{\text {i }}\right.$)	2.369 (5)	$\mathrm{O}(4)-\mathrm{U}-\mathrm{O}(8)$	71.1 (2)
$\mathrm{U}-\mathrm{O}(4)$	2.415 (5)	$\mathrm{O}(7)-\mathrm{U}-\mathrm{O}(8)$	73.0 (2)
$\mathrm{U}-\mathrm{O}(7)$	2.365 (6)	$\mathrm{O}(7)-\mathrm{U}-\mathrm{O}\left(3^{\text {I }}\right.$	74.8 (2)
$\mathrm{U}-\mathrm{O}(8)$	2.483 (6)		
		$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(5)$	110.8 (3)
S-O(4)	1.475 (5)	$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(6)$	111.1 (3)
S-O(5)	1.448 (6)	$\mathrm{O}(5)-\mathrm{S}-\mathrm{O}(6)$	114.1 (4)
$\mathrm{S}-\mathrm{O}$ (6)	1.457 (7)	$\mathrm{N}-\mathrm{S}-\mathrm{O}(4)$	103.3 (4)
S-N	1.638 (8)	$\mathrm{N}-\mathrm{S}-\mathrm{O}(5)$	105.8 (4)
		$\mathrm{N}-\mathrm{S}-\mathrm{O}(6)$	111.0 (4)
U-U'	3.942 (2)	$\mathrm{U}-\mathrm{O}(4)-\mathrm{S}$	145.0 (4)
$\mathrm{N}-\mathrm{O}\left(2^{\text {ii) }}\right.$)	3.309 (11)	$\mathrm{O}(7)-\mathrm{O}\left(9^{\text {i] }}\right.$)	2.643 (8)
$\mathrm{N}-\mathrm{O}(2 \mathrm{iii})$	3.011 (8)	$\mathrm{O}(8)-\mathrm{N}^{*}$	2.856 (11)
$\mathrm{N}-\mathrm{O}\left(6^{\text {iii) }}\right.$)	3.274 (9)	$\mathrm{O}(8)-\mathrm{O}\left(5^{\text {¹] }}\right.$)	2.814 (7)
$\mathrm{N}-\mathrm{O}\left(9^{\text {iv }}\right.$)	3.008 (8)	$\mathrm{O}(9)-\mathrm{O}\left(5^{\text {rii) }}\right.$	2.924 (11)
$\mathrm{O}(3)-\mathrm{O}\left(6{ }^{\text {iii) }}\right.$	2.843 (7)	$\mathrm{O}(9)-\mathrm{O}(8)$	3.047 (9)

Symmetry operations: (i) $1-x, 1-y, 1-z$; (ii) $-1+x, y, z$; (iii) $-x, 1-y,-z$; (iv) $-1+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (v) $1+x, y, z ;$ (vi) $1+x$, $\frac{1}{2}-y, 1-z$; (vii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Fig. 1. The $\left[\mathrm{UO}_{2}(\mathrm{OH})\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ dimer. H atoms are not shown.

Fig. 2. The unit-cell contents of uranyl hydroxide sulphamate trihydrate (b axis is vertical and c axis horizontal).

The bond lengths involving uranium are quite normal for uranyl compounds. The $S-N$ bond length of $1.638 \AA$ is comparable to $1.666 \AA$ observed in potassium sulphamate (Cox et al., 1967) and to $1.63 \AA$ (Wadhawan \& Padmanabhan, 1972) or $1.64 \AA$ (Cain \& Kanda, 1972) observed in ammonium sulphamate, but shorter than $1.772 \AA$ (Cameron \& Duncanson, 1976) or $1.7714 \AA$ (Bats, Coppens \& Koetzle, 1977) observed in sulphamic acid. The shorter bond length in sulphamates is generally attributed to the increased double-bond character involving the lone pair of nitrogen and unoccupied $3 d$ orbitals of sulphur. According to this model π-bonding is not possible in the sulphamic acid owing to the existence of an $\mathrm{H}_{3} \mathrm{~N}$ - unit in the molecule and therefore an $\mathrm{S}-\mathrm{N}$ single-bond length is observed.

The dimeric units are connected by a complex hydrogen-bond network as shown in Fig. 2. It can be seen from the short intermolecular distances shown in Table 3 that probably all H atoms are involved in the hydrogen bonding. The observed H -atom positions readily confirm this conclusion (the hydrogen bonding details have been deposited; see deposition footnote). The non-coordinated water molecule plays an important part in the hydrogen bonding.

References

Bats, J. W., Coppens, P. \& Koetzle, T. F. (1977). Acta Cryst. B33, 37-45.
Benson, G. A. \& Spillane, W. J. (1980). Chem. Rev. 80, 151-186.
Brown, C. J. \& Cox, E. G. (1940). J. Chem. Soc. pp. 1-10.
Cain, B. E. \& Kanda, F. A. (1972). Z. Kristallogr. 135, 253-261.
Cameron, A. F. \& Duncanson, F. D. (1976). Acta Cryst. B32, 1563-1564.
Capestan, M. (1960). Ann. Chim. (Paris), 5, 219-234.
Cox, G. W., Sabine, T. M., Padmanabhan, V. M., Ban, N. T., Chung, M. K. \& Surjadi, A. J. (1967). Acta Cryst. 23, 578-581.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Sampath, S. \& Aravamudan, G. (1971). Indian J. Chem. 9, 1282-1285.
SEREZHKIN, V. N. (1982). Koord. Khim. 8, 131-140.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M. (1976). Editor, The XRAY system-version of 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Toivonen, J. \& Niinistö, L. (1983). Inorg. Chem. 22, 1557-1559.
Wadhawan, V. K. \& Padmanabhan, V. M. (1972). Acta Cryst. B28, 1903-1907.

Synthèse et Structure d'un Nouveau Titanoniobate: Le Trititanotétraniobate de Dibaryum, $\mathrm{Ba}_{2} \mathbf{T i}_{3} \mathbf{N b}_{\mathbf{4}} \mathbf{O}_{18}$

Par Madeleine Gasperin
Laboratoire de Minéralogie-Cristallographie associé au CNRS, Université P. et M. Curie, 4 place Jussieu, 75230 Paris CEDEX 05, France

(Reçu le 31 mai 1983, accepté le 19 septembre 1983)

Abstract

M_{r}=1078.01\), monoclinic, $P 2_{1} / c, \quad a=$ 10.000 (3), $\quad b=9.959$ (3), $\quad c=7.315$ (2) $\AA, \quad \beta=$ $111.29(2)^{\circ}, \quad V=678.8(3) \AA^{3}, \quad Z=2, \quad D_{x}=$ $5.27 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu($ Мо $K \alpha)=$ $10.77 \mathrm{~mm}^{-1}, F(000)=972$, room temperature, $R(F)$ $=0.043, R_{w}=0.063$ for 4510 independent reflexions.

0108-2701/84/010009-03\$01.50

The structure has a framework of $M-\mathrm{O}$ octahedra with $M=\mathrm{Nb}, \mathrm{Ti}$ or $(\mathrm{Nb}, \mathrm{Ti})$. A double zigzag ribbon of octahedra having common edges is interlaced with single chains of three-shared octahedra. The corner sharing of these different units produces tunnels in which Ba^{2+} ions are located.
(c) 1984 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters, unrefined H -atom parameters, and the hydrogen-bonding scheme involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38878 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

